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ABSTRACT 
The purpose of the study is to investigate properties of the probability density function (PDF) 
of turbulent boundary layer fluctuating pressures measured on the exterior of a supersonic 
transport aircraft.  It is shown that fluctuating pressure PDFs differ from the Gaussian 
distribution even for surface conditions having no significant discontinuities.  The PDF tails 
are wider and longer than those of the Gaussian model.  For pressure fluctuations upstream of 
forward-facing step discontinuities and downstream of aft-facing step discontinuities, 
deviations from the Gaussian model are more significant and the PDFs become asymmetrical.  
Various analytical PDF distributions are used and further developed to model this behavior. 

INTRODUCTION 
Acoustic fatigue of high-speed aircraft structures usually results from elevated acoustic loads 
near the engines, where overall sound pressure levels often exceed 160 dB.  A less common 
mechanism for high-cycle fatigue is structural response due to turbulent boundary layer 
pressure fluctuations.  This is due to both reduced overall levels (typically in the 130-135 dB 
range) and short correlation lengths.  However, it has been recently shown with data from 
wind tunnel [1, 2] and flight [3] experiments that the turbulent boundary layer loading can be 
amplified in excess of 30 dB upstream of small forward-facing step discontinuities and in 
excess of 20 dB downstream of small aft-facing steps.  Thus, near such discontinuities, the 
loading is such that high-cycle fatigue becomes a concern.     

Although it has been shown that a coupling exists between the fluctuating pressure and 
flexible panels’ dynamic response for supersonic conditions [4], fully coupled computations 
are at-present prohibitive for any practical length scale.  Therefore, dynamic response 
analyses have typically been based on rigid wall pressure models with a weak coupling 
approximation.  Turbulent boundary layer pressure fluctuations are often characterized by a 
wavenumber-frequency spectrum model, which serves as the forcing function in the absence 
of fluctuating pressure time histories.  A comparison of several models may be found in [5].  
The problem with such an approach when considering high-cycle fatigue is that while the 
calculated dynamic response may be sufficiently accurate in terms of its root-mean-square 
level and power spectral density, there is no information available regarding the response 
probability distribution.  Lacking that information, the response may be erroneously assumed 
to have a Gaussian distribution, and one of several spectral-based cycle counting schemes 
applied [6].  Since most of the fatigue damage results from the high stress ranges, differences 
in the distribution tails may lead to an inaccurate fatigue life prediction.  The characterization 
of the probability density of the turbulent boundary layer pressure fluctuations is therefore 
required so that accurate distributions can be used in subsequent fatigue life calculations. 
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The purposes of the present study are two-fold.  One is to investigate properties of boundary 
layer fluctuating pressure PDFs over a broad range of flight and fuselage surface conditions.  
The second is to explore the use of, and further develop, analytical expressions capable of 
modeling the observed PDFs.  In this preliminary study, the emphasis is on describing a 
particular experimental PDF using various analytical expressions.  Further, the ease with 
which such expressions may be used in a structural dynamic response analysis is considered.  
No attempt was made to parameterize the PDF models with flight and surface conditions. 
Thus, prediction of the PDF for a particular condition is beyond the scope of this work.   

EXPERIMENT DESCRIPTION 
Experimental data acquired from the Tupolev Tu-144LL Supersonic Flying Laboratory [7, 8] 
was used in this study.  Pressure fluctuation time history data were acquired over the length of 
the fuselage for various subsonic and supersonic flight conditions.  On the aircraft starboard 
side, Kulite pressure transducers (model XCS-190-15D) were flush mounted in window 
blanks (WB) and fuselage sidewall locations as indicated in [7].   These transducers were used 
to measure pressure fluctuations on the smooth sidewall.  Measurements at three window 
blank locations were considered in this paper; ~18.9m (transducer N1.1, WB1), ~32.6m 
(N4.1, WB 4), and ~49.3m (N7.2, WB 7) from the aircraft nose (including the nose boom). 

On the port side of the aircraft, step plates were installed on the fuselage exterior at two 
locations spanning adjacent window blanks, see Figure 1.  The forward plate was in a 
longitudinal location close to and opposite transducer N1.1.  The rear plate location was 
located close to and opposite transducer N7.2.  The approximate distances of the port-side 
window blanks from the aircraft nose were: ~21.7m, ~22.6m, ~44.9m, and ~45.8m, for 
window blanks 8, 9, 10 and 11, respectively.  Within window blanks 8-11 (see Figure 2), 
miniature Kulite pressure transducers (model XCS-062-15D) were flush mounted, as 
described in [8].  Transducers in window blanks 8 and 10 were exposed to the effects of a 
forward facing step, while those in window blanks 9 and 11 were exposed to the effects of an 
aft facing step. The step plates were comprised of two layered plates measuring 4 and 3 mm in 
height.  For flights 24-26, both plates were used to achieve a total step height of 7 mm.  For 
flight 27, the upper 3 mm plate was removed leaving a step height of 4 mm. 

 
Figure 1:  Location and identification of window blanks instruments in vicinity of step plates. 

All transducer faces were flush mounted with respect to the neighboring window blank 
material and the fuselage sidewall.  Flushness measurements are documented in [7, 8].  
Independent signal conditioning of each transducer was provided to allow for simultaneous 
measurements.  Signals were AC coupled to remove the static differential pressure across the 
fuselage sidewall at altitude.  Anti-aliasing filters were applied at a corner frequency of 11.2 
kHz (the upper frequency of the 10 kHz 1/3-octave band).  A digital recorder was used to 
record long, contiguous time histories of the data, typically between 30-60 seconds each. 



 
Figure 2:  Layout of measurement points in front of forward-facing steps and behind aft-

facing steps.  Dimensions are in mm. 

 

EXPERIMENTAL PDF, SKEWNESS AND KURTOSIS CHARACTERISTICS 
The analysis of experimental data concentrated on determination of the PDF and calculation 
of skewness and kurtosis characteristics.  Skewness, λ , and kurtosis, γ , are the principal 
parameters describing non-Gaussian PDF features and are defined as 
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where u is the random variable (in this case the fluctuating pressure), m is the mean value of 
u, E[.] is the expected value, and σ  is the standard deviation of u.  The PDF of a random 
variable u with a Gaussian distribution is written as 
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For the Gaussian random process, the skewness is 0 and kurtosis is 3.  If the experimental 
PDF is non-Gaussian, but symmetric with respect to the mean, kurtosis is the only additional 
parameter required to describe the distribution.  It characterizes the sharpness or flatness of 
the PDF peak and the wideness or narrowness of the PDF tails.   A kurtosis value greater than 
3 indicates a sharper peak and wider tail than the Gaussian PDF.  If the experimental PDF is 
asymmetrical with respect to the mean, then the skewness is non-zero and its sign will 
indicate the direction in which the PDF is skewed. 

For time history analysis, the crest factor, c, can serve as another indicator of non-Gaussian 
behavior.  The crest factor is related to the PDF tails and is defined as the ratio between the 
highest time history peak and the signal root-mean-square value.  While this parameter is 
more intuitive and easier to calculate than kurtosis, it is of limited value, as its magnitude 
increases with increasing data record length. 

Results for the smooth surface.  Kurtosis values for the smooth surface condition (no step) 
are shown in Table 1 for one subsonic and three supersonic flight conditions.  The run 
numbers are provided to serve as a cross-reference to additional flight data provided in [8].  
For each smooth surface condition, reported kurtosis values were obtained by averaging the 
individual kurtosis values from the two runs indicated, each at three transducer locations 
(N1.1, N4.1 and N7.2).  It is readily noted from the kurtosis that the data exhibits               
non-Gaussian behavior.  The subsonic condition had the highest kurtosis value of 4.1, while 
the highest supersonic condition at Mach 2.0 had the lowest kurtosis value of 3.7.  The 



variation of kurtosis along the length of the fuselage was insignificant (< 0.2).  The skewness 
was negligible for all subsonic and supersonic flight conditions. 

Plots of typical PDFs for the subsonic and Mach 2.0 conditions are shown in Figure 3 – 
Figure 6 along with the Gaussian model.  The data is plotted on a linear scale to show the 
distribution at the peak, and on a semi-log scale to show the PDF tails.  The experimental 
PDFs are taller and sharper than the Gaussian model at the peak, see Figure 3 and Figure 5.  
More importantly, the experimental PDF tails are much wider than those of the Gaussian 
model, see Figure 4 and Figure 6.  In other words, the probability of a high peak occurrence in 
the experimental data is several times larger than that predicted by the Gaussian model.  From 
a structural dynamics standpoint, any synthetic time history of this loading generated using 
the Gaussian model will under represent the number of high peak events relative to the 
experimental data.  In terms of crest factor, the subsonic condition reached a value of 10.0 for 
the subsonic condition and 9.0 for the supersonic conditions.  By comparison, the crest factor 
for records of similar length for a Gaussian process would be roughly 4.5 – 5.0. 

Table 1:  Kurtosis and skewness of fluctuating pressure upstream of forward-facing steps. 

     Kurtosis/skewness upstream of forward facing 
steps at distance of: 

Run 
No. 

Aircraft 
Mach No./ 
Alt (km) 

Step 
Height 
(mm) 

Window 
Blank 
No. 

Kurtosis/
skewness
(Smooth)

112 mm 
(Xdcr 9) 

56 mm 
(Xdcr 8) 

32 mm 
(Xdcr 7) 

1 mm 
(Xdcr 1) 

(†) 0 Avg 4.1 / 0.1     
194 4 8  4.2 / 0 3.8 / 0.2 3.4 / 0.3 3.6 / 0.3 
195 4 10  4.1 / 0.1 3.5 / 0.2 3.4 / 0.4 3.4 / 0.4 
122 7 8  4.0 / 0.1 3.5 / 0.2 3.4 / 0.4 4.0 / 0.7 
124 

0.75 / 4.9 

7 10  3.9 / 0.1 3.3 / 0.3 3.3 / 0.4 n/a 
(‡) 0 Avg 3.9 / 0.1     
187 4 8  3.8 / 0 3.4 / 0.1 3.3 / 0.4 3.6 / 0.5 
188 4 10  3.3 / 0 3.2 / 0.2 3.3 / 0.4 3.7 / 0.6 
152 7 8  3.6 / 0 3.3 / 0.2 3.3 / 0.4 4.4 / 0.9 
151 

1.2 / 12.0 

7 10  3.3 / 0 3.2 / 0.2 3.2 / 0.4 4.6 / 1.0 
(*) 0 Avg 3.8 / 0     
183 4 8  3.6 / -0.1 3.8 / -0.6 3.2 / 0.2 3.8 / 0.7 
184 4 10  3.5 / 0 3.1 / -0.6 3.1 / 0.1 3.9 / 0.7 
149 7 8  3.6 / 0.3 3.6 / 0.2 3.3 / 0.2 5.0 / 1.1 
148 

1.6 / 14.0 

7 10  3.6 / 0.3 3.6 / 0.1 3.2 / 0.2 5.0 / 1.1 
(#) 0 Avg 3.7 / 0     
180 4 8  3.6 / -0.1 4.3 / 0.7 7.3 / -1.4 5.3 / 0.7 
181 4 10  3.3 / 0 4.4 / 0.7 5.7 / -1.3 5.4 / 0.8 
165 7 8  3.6 / -0.1 4.1 / -0.9 3.3 / 0.1 3.8 / 1.2 
167 

2.0 / 16.7 

7 10  3.3 / 0 3.1 / -0.7 3.2 / 0 4.0 / 1.2 
(†) Runs 123 & 196, (‡) Runs 153 & 189, (*) Runs 150 & 185, (#) Runs 166 & 182 

Results for surfaces with forward-facing step discontinuities.  Power spectral density data 
from the surface condition with small step discontinuities were previously studied in [1-3].  
The PDF analysis of such flight data is new.  The qualitative difference between the PDFs 
obtained from the smooth surface and the stepped surface conditions is that the latter becomes 
skewed.  



Figure 7 – Figure 10 show PDF peaks and tails for the run 165 forward-facing step condition, 
see Table 1.  Immediately in front of the step, Figure 7 shows a positive skewness, giving a 
PDF peak shifted in the negative direction.  The corresponding PDF tail, Figure 8, is much 
longer in the positive direction than in the negative direction.  At a point further upstream, 
Figure 9 shows a negative skewness, giving a PDF peak shifted in the positive direction, with 
a somewhat longer tail in the negative direction than in the positive direction, see Figure 10.  
The effect of skewness is clearly demonstrated in the fluctuating pressure time history 1mm 
upstream of the forward-facing step, see Figure 11.  It is less striking, but still apparent in the 
pressure time history 56mm upstream of the forward-facing step, see Figure 12. 

Kurtosis and skewness data for the forward facing step condition is shown in Table 1 for one 
subsonic and three supersonic flight conditions.  The most significant deviations from 
Gaussian are highlighted in bold.  As expected, the analyses show that the intensity of       
non-Gaussian behavior depends on the distance from the step.  Data from transducers located 
at 112 mm before the step (8.9 and 10.9) indicate no notable differences compared to the 
smooth surface data.  The skewness values are nearly zero and kurtosis values were close to 
those of the smooth surface, though perhaps a bit smaller in the supersonic regime.  This 
indicates that beyond a particular point in front of the forward facing step, the effect of the 
step does not further influence the non-Gaussian parameters of the fluctuating pressure. 

As the proximity to the step increases, the effect on the non-Gaussian parameters becomes 
more significant and strongly influenced by step height.  Consider, for example, the 4mm step 
data at Mach 2.0 (runs 180 and 181).  In these cases, the kurtosis peaks at a distance of 32 mm 
(at transducers 8.7 and 10.7).  The skewness distribution as a function of distance from the 
step exhibits an oscillatory pattern. Proceeding from 112mm to 1mm, the skewness is near 
zero, is positive at 56mm, negative at 32 mm, then again positive at 1mm.  What is interesting 
is that both the skewness and kurtosis follow identical patterns, with nearly identical values of 
skewness at the forward (run 180) and the aft (run 181) fuselage locations.  This indicates 
insensitivity of the non-Gaussian parameters to location on the aircraft, which may be loosely 
interpreted as insensitivity to Reynold’s number and boundary layer thickness.  Skewness and 
kurtosis from the two Mach 2.0 runs with a 7mm step (165 and 167) exhibit similar 
characteristics to each other, but those characteristics differ from the 4 mm step height.    
Interpretation of these non-Gaussian behaviors in terms of the flow physics is beyond the 
scope of this paper. 

As the Mach number is decreased from 2.0 to 0.75, the character of the non-Gaussian 
behavior is additionally affected.  Compare, for example, the skewness and kurtosis for the 
4mm step in the rear location as a function of Mach number (runs 181, 184, 188 and 195).  As 
the Mach number decreases, the oscillation wavelength of the skewness distribution appears 
to increase and the oscillation amplitude of the skewness distribution decreases.  Further, the 
kurtosis variation with distance from the step becomes smoother, and in the subsonic case 
does not exceed that of the smooth surface condition.  As with the Mach 2 condition, the 
similarity between non-Gaussian behaviors at forward (window blank 8) and rear (window 
blank 10) positions is maintained for a given step height, and varies with differing step height 
for the other flight regimes.  

Results for surfaces with aft-facing step discontinuities.  Kurtosis and skewness for 
positions downstream of aft-facing step discontinuities are presented in Table 2.  This data 
does not exhibit as strong a pattern of behavior with distance from the step and across flight 
regimes as the forward facing step.  Any such patterns are both different and subtle. 

 



Table 2:  Kurtosis and skewness of fluctuating pressure downstream of aft-facing steps. 

    Kurtosis/skewness downstream of aft 
facing steps at distance of: 

Run 
No. 

Aircraft 
Mach No./ 
Alt (km) 

Step 
Height 
(mm) 

Window
Blank 
No. 

20 mm 
(Xdcr 1) 

52.5 mm 
(Xdcr 7) 

161 mm 
(Xdcr 9) 

194 4 9 3.6 / 0.2 3.7 / 0.1 4.1 / -0.1 
195 4 11 3.6 / 0.1 3.7 / 0.2 4.0 / 0.2 
122 7 9 3.6 / -0.4 3.6 / 0.2 4.1 / -0.2 
124 

0.75 / 4.9 

7 11 3.8 / -0.5 3.5 / 0.1 3.9 / 0.1 
187 4 9 3.3 / 0 3.6 / 0.2 3.8 / -0.1 
188 4 11 3.2 / 0 3.5 / 0.1 3.6 / 0.2 
152 7 9 3.3 / -0.3 3.4 / 0.2 3.7 / -0.1 
151 

1.2 / 12.0 

7 11 3.2 / -0.3 3.2 / 0.2 3.5 / 0.2 
183 4 9 3.2 / 0.3 3.4 / 0.1 3.4 / 0.3 
184 4 11 3.2 / 0.3 3.3 / 0.1 3.4 / 0.2 
149 7 9 3.3 / 0 3.1 / 0.1 3.5 / 0.2 
148 

1.6 / 14.0 

7 11 3.2 / 0 3.2 / 0.1 3.3 / 0.2 
180 4 9 3.1 / 0.2 3.3 / 0.1 3.2 / 0.1 
181 4 11 3.0 / 0.1 3.3 / 0 3.4 / 0.2 
165 7 9 3.4 / 0.3 3.2 / 0 3.3 / 0.2 
167 

2.0 / 16.7 

7 11 3.7 / 0.5 3.2 / 0 3.3 / 0.2 
 

Kurtosis values are generally lower than those of the smooth surface condition.  At Mach 0.75 
and at Mach 1.2, the kurtosis generally increases in value with increasing distance 
downstream of the step.  This tendency is reduced at Mach 1.6, and is not evident at Mach 2.0.  
Skewness values are mainly within ±0.2, a level which can be considered indistinguishable 
from the Gaussian behavior.  Only at the closest location of 20 mm are greater positive and 
negative magnitudes (±0.5) evident.  For a given step height, skewness and kurtosis exhibit 
similar magnitudes and trends in forward and rear fuselage locations. 

To summarize, the non-Gaussian behaviors of fluctuating pressure upstream of forward-facing 
step discontinuities is highly dependent upon distance from the step and the step height.  The 
behavior is less dependent on aircraft speed, and shows no dependency on location on the 
fuselage.  These observations also apply to the non-Gaussian behaviors downstream of aft-
facing steps, however these effects are subtle and both spatial distribution and amplitude 
differ from those of the forward-facing steps. 

NON-GAUSSIAN MODELS FOR ANALYTICAL APPROXIMATION OF 
EXPERIMENTAL PROBABILITY DISTRIBUTIONS 

Non-Gaussian behavior of fluctuating pressure PDFs is evident from the results presented in 
the previous section. The difference between experimental probability distributions and the 
Gaussian analytical distribution (2) was quantitative and significant. Hence, no appropriate 
approximation can be achieved by use of the Gaussian model. Other models able to account 
for various skewness and kurtosis values are necessary.   Several are considered herein, 
including the Gram-Charlie series, the Hermite polynomial transformation, and a piecewise-
Gaussian approximation.  A summary of each approximation follows. 



Gram-Charlie Series.  The expansion of the Gaussian PDF (2) into a truncated series has 
been widely used in the area of dynamics and vibrations [9, 10].  One form, the Gram-Charlie 
series, may be written as 
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where ( )u u m σ= −  is a standardized non-dimensional variable.  Because the Gram-Charlie 
series is truncated, its use is problematic in that it can lead to inappropriate values of the PDF 
for certain distribution ranges.  It has been found [11, 12] that the most critical situation is 
when the kurtosis value γ  is less than 3, giving rise to non-physical negative values of the 
PDF.   Although the fluctuating pressure data presented has 3γ > , another condition occurs 
for particular values of the last summand in (3), which gives rise to valleys on both sides of 
the distribution near the argument values 3u m σ− = .  For skewed distributions, this effect 
appears for smaller kurtosis values than for non-skewed distributions, the valleys are 
asymmetric, and have different widths.  This behavior is not appropriate for the experimental 
distributions under consideration, as there is no indication of additional peaks (or valleys) in 
the tail areas.  Clearly, the form of the Gram-Charlie series is easy to implement, however, it 
cannot be applied without these special considerations.  

Hermite Polynomial Transformation.  To overcome drawbacks of the Gram-Charlie series, 
a functional transformation of the Gaussian random variable employing Hermite polynomials 
was developed [13].  This method avoids erroneous negative distribution values by applying 
Hermite functions to the time history itself, not to the PDF.  In doing so, however, its 
functional form and application become much more complicated.  For the 4th order Hermite 
series, the PDF takes the form 
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Symmetric Piecewise-Gaussian Approximation. As an alternative to the above methods, a 
piecewise-Gaussian model has been proposed [14, 15]. The idea of this approach is to 
construct non-Gaussian PDFs from a few sections of Gaussian distributions (2), each with 
different parameters. This can be done in such a way as to avoid negative values of the 
probability density and ensure its unimodality. Such an approach is more flexible in data 
fitting than the simple Gaussian distribution, but its use is no more complicated than that of 
the Gaussian model because the piecewise-Gaussian approximation simply entails application 



of the Gaussian model (2) several times.   Two types of approximations are considered; Type I 
as previously formulated [15], and a new formulation (Type II), which allows for wider tails. 

The Type I formulation for symmetrical ( 0λ = ), centralized ( ), non-Gaussian 
distribution with variable kurtosis has been composed [15] from two quasi-Gaussian 
exponential functions with different standard deviations 
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All sections of this piecewise-Gaussian PDF were joined in such a way that conditions of 
continuity for the function itself and for its derivative were preserved.  Note that since 
the quasi-Gaussian tails were shifted horizontally, the Type I formulation never acquires 
negative values and thus retains that property of the Gaussian distribution (2).  This is an 
advantage over the Gram-Charlie series. The five parameters Q, H, 

( )sP u

1σ , 2σ , and v in (6) may 
be expressed in terms of the original standard deviation σ  and the non-Gaussian parameter 
β .  The parameter β  imparts the particular value of kurtosis γ  via a nonlinear algebraic 
equation.   

It appeared that the fluctuating pressure PDF tails for the smooth surface condition with 
symmetric distribution were wider than those that could be provided by the Type I 
formulation.  Since the Type I form does not permit kurtosis values larger than a certain 
boundary value, an alternative form (Type II) was developed.   In the Type II formulation, the 
exponential functions that made up the Type I form were multiplied by additional factors, 
which are inversely proportional to 1σ  and 2σ .  This action changed the equations for 
determination of the piecewise-Gaussian parameters, and in particular, the relation between 
β and the specified value of kurtosis γ .  In doing so, the range of possible specified kurtosis 
values was extended, allowing for the creation of analytical PDFs with wider tails than were 
possible with the Type I form.  The Type II formulation for symmetrical ( 0λ = ), centralized 
( ), non-Gaussian distribution with variable kurtosis and standard deviation 0=m σ  is written 
as 
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and the equation for β  is as follows 

 

2
4 3 2 2

25 2

4 2 2 4
4

4 12 ( ) 6 ( ) 4 ( )( 3)
5

3 ( ) (1) 3 6 ( ) ( )
2

H Y Y Y Y Ye
e

DY Y Y Y
B

β 3Y Yβ β ββ β β

πβ β β

 
−  
  − − + − − −

− + +

 
 + Φ + −Φ + − + − =   

 
γ

 (9) 

Non-Symmetric Piecewise-Gaussian Approximation.  It has been shown [14, 15] that a 
non-symmetric form of a piecewise-Gaussian model may be constructed from two sections of 
different symmetric piecewise-Gaussian models joined at the mode value µ , the point of peak 
PDF.  That is, the negative side of one symmetric piecewise-Gaussian model is joined with 
the positive side of another.  To ensure smoothness of the function at the mode value, both 
halves must have the same value of the symmetric non-Gaussian parameter β .  An additional 
equation similar to (9) imparts the desired skewness.  Thus far, only the Type I non-symmetric 
piecewise-Gaussian approximation has been developed.  It has the form  
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Additional details regarding this formulation may be found in [15]. 

COMPARISON OF MODELS WITH EXPERIMENTAL DISTRIBUTIONS 
Smooth Surface (Symmetric PDF Case).  All three models were exercised for the smooth 
surface condition previously shown, using the kurtosis value for that particular condition and 
skewness of zero.  The symmetric Gram-Charlie series approximation (3), shown in Figure 13 
gave a little improvement in both the peak and tail compared to the Gaussian approximation 
shown in Figure 4.  If one tries to make the tails of the Gram-Charlie series approximation 
wider by increasing the kurtosis (in this case to 7), the distribution changes dramatically and 
in an unacceptable manner, as discussed earlier and as shown in Figure 13.  The Type I 
symmetric piecewise-Gaussian approximation (6), shown in Figure 14, improved both the 
peak and the tail compared to the Gaussian model.  The Type II symmetric piecewise-
Gaussian approximation (7) is also shown in Figure 14.  It is seen that the Type II formulation 
more accurately captures the behavior of the PDF tails, albeit at some compromise to the 
peak. 

Lastly, the Hermite polynomial transformation approximation (4) is seen in Figure 15 to agree 
very well with the experimental distribution.  With skewness λ  set to zero, equations (5) 
simplify because and a become zero.  Even in this form, however, the Hermite polynomial 3h



approximation equations are complicated and hence, their further analytical manipulation is 
difficult.  This is considered a drawback compared with the piecewise-Gaussian models. 

Surface with step discontinuities (Skewed PDF Case).  The Mach 2.0, 7mm forward-facing 
step condition (run 165) shown in Figure 7 and Figure 8 was used to assess the ability of the 
three non-symmetric approximations to model experimental data.  The skewness and kurtosis 
used in the models is that of run 165, see Table 1.  The Gram-Charlie approximation showed 
some shift of the peak to the left (see Figure 16), but this is accompanied by improper changes 
in the form of valleys and peaks of the PDF for positive ranges.  Furthermore, the 
approximation erroneously indicates negative probability distributions in the range of –3000 
to –4000 Pa, see Figure 17.  Hence, the Gram-Charlie series approximation is unsatisfactory.  
The more sophisticated non-symmetric Type I piecewise-Gaussian and Hermite polynomials 
models were more successful.  Figure 18 shows that the PDF peak was captured nearly 
perfectly using the piecewise-Gaussian model, and was also modeled well using the Hermite 
polynomial model, see Figure 20.  There are some differences in the tails, but both models 
generally reflected the asymmetrical shape.  The piecewise-Gaussian model worked 
somewhat better at the negative tail (Figure 19) whereas the Hermite polynomial model was 
more precise at the positive tail (Figure 21). 

CONCLUSIONS 
In this study, turbulent boundary layer pressure fluctuations from the Tu-144LL were 
observed to deviate from the Gaussian distribution under all flight conditions.  Differences 
were concentrated mainly at the distribution tails.  For the smooth wall condition, skewness 
was near zero and only the kurtosis was affected.  The non-Gaussian behaviors of fluctuating 
pressure near forward- and aft-facing step discontinuities were additionally skewed and shown 
to be highly dependent upon the distance from the step and the step height, less dependent on 
aircraft speed than with distance from step/step height, and not dependent on the fuselage 
location.  The behaviors of points upstream of forward-facing steps appeared more affected 
than points downstream of aft-facing steps, for the locations considered. 

Several approximate models were evaluated including the Gram-Charlie series, Hermite 
polynomial transformation, and piecewise-Gaussian approximations.  Application of the 
Gram-Charlie series was shown to be problematic both for smooth and stepped wall 
conditions as non-physical behaviors could be produced under some circumstances.  The 
Hermite polynomial transformation approximation modeled both the smooth wall (symmetric) 
and forward-facing step (asymmetric) behaviors well.  However, its form is not conducive to 
further analytical manipulation. The piecewise-Gaussian approximations generally worked 
well, and a new form was developed which allowed for higher values of kurtosis.  The 
advantage of the piecewise-Gaussian models is that when properly constructed from two or 
four sections having different parameters, their subsequent use requires nothing more than 
recurring manipulation with the Gaussian model.  From a practical standpoint, this allows 
previously developed Gaussian solutions to be employed in situations in which the PDF is 
non-Gaussian. 

Areas of remaining interest lie in the further development of approximate models (e.g. an 
asymmetric version of the type II piecewise-Gaussian approximation) and the development of 
a model to determine skewness and kurtosis for a particular flight condition, step size, and 
distance from the step.  Finally, the effects of a non-Gaussian fluctuating pressure on the 
fuselage structural dynamic response and fatigue life remain to be assessed. 
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Figure 3:  PDF peak of fluctuating pressure 

from smooth surface (subsonic). 
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Figure 4:  PDF tail of fluctuating pressure 

from smooth surface (subsonic). 
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Figure 5:  PDF peak of fluctuating pressure 

from smooth surface (M 2.0). 
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Figure 6:  PDF tail of fluctuating pressure 

from smooth surface (M 2.0). 
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Figure 7:  PDF peak of fluctuating pressure 

at 1mm upstream of forward-facing step. 
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Figure 8:  PDF tail of fluctuating pressure at 

1mm upstream of forward-facing step. 
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Figure 9:  PDF peak of fluctuating pressure 
at 56mm upstream of forward-facing step. 
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Figure 10:  PDF tail of fluctuating pressure 
at 56mm upstream of forward-facing step. 
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Figure 11:  Fluctuating pressure time history 

at 1mm upstream of forward-facing step. 
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Figure 12:  Fluctuating pressure time history 

at 56mm upstream of forward-facing step. 
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Figure 13:  Gram-Charlie PDF tail of 
fluctuating pressure (smooth surface). 
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Figure 14:  Piecewise-Gaussian PDF tail of 

fluctuating pressure (smooth surface). 
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Figure 15:  Hermite polynomial PDF tail of fluctuating pressure (smooth surface). 
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Figure 16:  Gram-Charlie PDF peak of 

fluctuating pressure (forward step). 
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Figure 17:  Gram-Charlie PDF tail of 

fluctuating pressure (forward step). 
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Figure 18:  Type I piecewise-Gaussian PDF 
peak of fluctuating pressure (forward step). 
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Figure 19:  Type I piecewise-Gaussian PDF 
tail of fluctuating pressure (forward step). 
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Figure 20:  Hermite polynomial PDF peak of 

fluctuating pressure (forward step). 
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Figure 21:  Hermite polynomial PDF tail of 

fluctuating pressure (forward step). 
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